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Nonlinear ship-wave theories by continuous mapping 

By F. NOBLESSE? AND G. DAGAN$ 
Institute of Hydraulic Research, The University of Iowa, Iowa City 

(Received 22 July 1975) 

The exact equations of steady inviscid flow past a ship hull are formulated in 
a reference domain, onto which the flow domain is mapped. A thin-ship perturba- 
tion analysis is performed in the reference domain, and the first- and second-order 
solutions are derived. The classical thin-ship theory is obtained as the consistent, 
mapping-independent, perturbation solution in the physical space. Guilloton’s 
method is interpreted as an inconsistent, mapping-dependent, second-order 
approximation. A new inconsistent approximation is obtained by exploiting the 
freedom in the mapping of the flow domain onto the reference domain. Further 
improvements are suggested. 

1. Introduction 
The analytical theory of the wave resistance of ships was dominated in the 

first half of the century by Michell’s (1 898) thin-ship theory.Unsatisfactory agree- 
ment between this linearized theory and the measured wave drag on hulls of 
practical shapes on the one hand and the advent of electronic computers on the 
other have stimulated interest in further development of the theory into the 
nonlinear range. 

The Michell approximation may be obtained as the first-order solution in a 
systematic perturbation expansion of the velocity field in terms of the beam/ 
length ratio as a small parameter, as shown apparently for the first time by 
Peters & Stoker (1957). The same approach may be employed to derive the equa- 
tions satisfied by the second-order nonlinear term of the velocity expansion, a step 
which has been taken in somewhat different ways by Wehausen (1963) and Maruo 
(1966) (for a detailed review see Wehausen 1973). 

The derivation of Michell’s theory, as well as of the higher-order approxima- 
tions, is based on a transfer of the boundary conditions at  the free surface and on 
the hull by Taylor expansions about the undisturbed free surface and the ship 
centre-plane, respectively. Joseph (1973), in a discussion of the theory of two- 
dimensional progressive waves, finds the transfer of the velocity field from the 
actual flow domain beneath the free surface to the domain beneath t’he plane of 
the undisturbed free surface difficult to understand and suggests an alternative 
interpretation of the theory by continuous mapping. The difficulty underlined by 
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Joseph (1973) is even more conspicuous in the case of three-dimensional flow past 
thin ships. For instance, the velocity a t  the intersection of the free surface and the 
hull is simultaneously projected by the Taylor expansions onto the unperturbed 
free surface and the centre-plane, which led to the belief that a second-order line- 
integral correction term was needed. It is one of our purposes in this paper to 
show that the higher-order thin-ship theory can be rigorously derived along 
Joseph’s lines. We use, however, a more general approach in that perturbation 
expansions are not assumed from the outset and, more significant, the horizontal 
mapping is left arbitrary. The latter point has major consequences for the 
derivation of nonlinear theories other than the classical one. 

The second-order term in the classical, consistent thin-ship expansion is 
extremely difficult to compute. l\loreover, the expansion becomes lion-uniform 
at small Froude numbers, as shown for the two-dimensional case by Salvesen 
(1969) and Dagan (1975b). These difficulties have prompted the seeking of 
simpler, approximate nonlinear corrections, one line of attack being the replace- 
ment of the Michell centre-plane singularities by modified ones, such that the 
associated linearized velocity field should be closer to an exact solution of the 
nonlinear problem. The most successful method of this type is apparently that of 
Guilloton (1964), who has Suggested replacing the actual hull by a related 
‘linearized hull ’. Wehausen (1969) has arrived a t  similar results as part of a com- 
plete second-order solution based on the use of Lagracgian co-ordinates. The 
apparent success of Guilloton’s method in predicting ship-wave resistance better 
than Michell’s theory (Gadd 1973) has stimulated attempts to arrive at  rational 
derivations of the method by Noblesse (1975 a )  and Dagan (1975 a) ,  who inde- 
pendently suggested similar rationalizations of Guilloton’s method by mapping 
the flow domain onto a reference domain and straining the co-ordicates. It was 
shown that Guilloton’s method could be interpreted as a second-order incon- 
sistent solution where the free-surface and hull boundary conditions were satisfied 
to second order, while the second-order field equations were ignored. Here the 
approach used by Noblesse and Dagan is further investigated and generalized, 
and, in particular, the field equations, as well as the boundary conditions, are 
solved consistently to second order. In  addition, the use of the mapping for the 
purpose of simplifying the second-order nonlinear problem is explored in a more 
general way. 

The main purpose of the present study is then to show that various nonlinear 
theories of flow past ship hulls, presented in the past somewhat disparately, can 
be derived by the fundamental approach of continuous mapping and perturba- 
tion expansions. In  particular, a precise interpretation of the method of Guilloton 
is obtained. Furthermore, a new approximate solution generalizing Guilloton’s 
method is presented, and a line of attack for further improvements is suggested. 
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2. The exact equations of flow past a ship hull 
2.1. Xtatement of the problem in physical space 

In this paper, we are concerned with steady free-surface gravity flow past a ship 
in an oncoming uniform stream of an inviscid incompressible fluid. The flow 
domain is assumed to be of infinite depth and infinite lateral extent. 

Variables are made dimensionless with respect to the velocity @ of the on- 
coming unihrm stream, the acceleration of gravity g and the fluid density p, e.g. 
X = X’g/a2, U = U’/@ and R = R‘g2/pW, where X’(X‘, Y‘, 2‘) is the position 
vector of a point in the flow domain, U’( U’, V’, W’) is the disturbance velocity 
(the components of the dimensionless total fluid velocity are then 1 + U ,  V and W )  
and R‘ is the wave resistance. The Cartesian system of co-ordinates X(X, Y ,  2) is 
defined as follows: the unperturbed free surface and the ship centre-plane (which 
is a plane of symmetry for the flow) are taken as the planes Y = 0 and 2 = 0 ,  
respectively, and the Y and X axes point upwards and towards the stern of the 
ship, respectively . 

The hull of the ship is defined by the equation 2 = t F ( X ,  P). The hull function 
F ( X ,  Y )  embodies the effects of the sinkage and trim experienced by the ship, and 
is therefore not known exactly beforehand. For simplicity, the analysis of the 
hydrodynamic problem is developed for a supposedly known hull and the effects 
of sinkage and trim are incorporated into the solution in the manner indicated in 
appendix C. The equation of the free surface is taken as Y = E ( X ,  2). The flow 
domain is then defined by -m -= X < +a, Y 6 E ( X , Z )  and 121 2 F ( X ,  Y ) .  

The exact equations and boundary conditions of the problem are well known 
(see, for instance, Wehausen & Laitone 1960, p. 447): 

V . U = V x U = 0 (in the flow domain), (2.1) 

(2.2) W = f [( 1 + V )  F, + VFIr] (on the ship hull), 

(2.3) 

(2.4) 
(on the free surface). 

V=( l+U)E ,+WE,  
V+&(U2+ P+ W 2 ) f E  = 0 

In addition, the radiation condition must be satisfied. 

2.2. Mapping of theJlow domain onto a reference domain 

The complicated and unknown shape of the free surface suggest,s mapping the 
flow domain onto a simple, well-defined reference domain. A simple domain,? 
suggested by the thin-ship approximation, is the lower ha,lf-space bounded by 
Y = 0 and cut along a slit cr in the centre-plane 2 = 0;  see figure 1. It is empha- 
sized that the slit crneed not, and in general will not, coincide with the projection 

t Other, more complicated, reference domains, e.g. the domain bounded by P = 0 and 
the hull 2 = F ( X ,  Y ) ,  could be considered. Other simple mappings could also easily be 
conceived, for instance, both the ship hull and the free surface could be mapped onto the 
undisturbed free surface y = 0; this would obviously lead to the so-called flat-ship theory. 
The slender-ship approximation, on the other hand, implies a degenerate mapping of the 
hull surface onto the line y = z = 0. 
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X + 
x 

FIGURE 1. Mapping of the flow domain onto the reference domain. 

C of the portion of the hull beneath Y = 0 onto the centre-plane. In fact, it  is 
advantageous to leave the exact shape of c unspecified at present. 

The mapping is required to be one-to-one and to carry points on the actual free 
surface onto the undisturbed free surface Y = 0 and points on the hull onto points 
on the slit c in the centre-plane (figure 1). The mapping is expressed by the 
equations 

where x(x, y, x )  is the position vector of a point in the reference domain, 
g(g, 7, c )  is the mapping vector and U(U, v, w) is the disturbance velocity expressed 
as a function of x. 

(2.51, (2.6) x = x+g(x), U(X) = u(x), 

The free-surface mapping is expressed by (2.5) as 

X = x + E ( x , O , Z ) ,  Y = E ( X , Z )  = T(X, O , Z ) ,  Z = z + ~ ( x ,  0 , ~ )  (2.7) 

while the hull mapping implies 

X=x+((x,y,O),  Y = ~ + r ( x , y , o ) ,  z = & F ( S , Y ) = c ( x , y ,  & O ) ,  (2.8) 

where [ and q are continuous across the slit c but 6 undergoes a jump there. 
Let us introduce the function f(x, y) defined by 

f(X, Y) = f ((x, Y, O), Y + r(x ,  Y, 0,). (2.9) 

The surface defined by z = &j(x ,y)  has the same offsets as the ship hull 
2 = f F ( X ,  Y )  but at ‘displaced points’ (x, y) rather than (X, Y ) .  This surface 
corresponds to the ‘linearized hull’ introduced by Guilloton, and it is referred to 
as such below. By using (2.9), (2.8) gives 

C(X,Y, k 0) = &f(X,Y). (2.10) 

Similar ideas, of mapping the flow domain onto a reference domain, underlie 
the articles by Yim (1968), Wehausen (1969), Landweber (1973), Joseph (1973), 
Dagan (1975 a )  and Noblesse (1975 a). However, the approach presented above 
and in 5 2.3, folIowing Noblesse (1975b), is more general. 

Naturally, this idea of mapping physical space onto a simple reference domain 
has long ago been exploited in the theory of two-dimensional free-surface flows, 
where the complex potential is extensively used as the independent variable. One 
should realize, however, that the remarkable properties associated with con- 
formal mappings do not carry over to the three-dimensional case. 
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2.3. Statement of the problem in the reference space 

The (exact) equations in the reference space (x, y, z )  may be obtained by intro- 
ducing the mapping (2.5), (2.6) into (2.1)-(2.4). Whenever it is convenient, we 
shall use the following tensor notation: X,,  q, x,, ti and u, (i = 1,2,3) denote the 
components of the vectors X, U, x, c and u, and q, 3 aUi/aXj, ui, = iIu$3xj and 

represent the components of the gradient tensors VU, VU and Vc. 
Equation (2.6) yields by differentiation 

q,k(x) dx, = %<,j(X) dxj (i = 1, 2, 3)j 

where the summation convention applies, here and hereafter. By using (2.5), we 
obtain 

where Skj is the Kronecker delta. Solving the linear system (2.11) results in 

(2.11) q, k ( X )  [ sk j  + Ek, j (x) ]  = ui,j(x) ( i , j  = ' 9  2, 3), 

q, k(X)  = u i , j ( x )  ajk(x) (i, = 2, 3), 

where ajk denotes the inverse of the matrix 8kj+Ek,j. By substituting into (2.1), 
we obtain the transformed field equations 

U ~ , ~ ~ , ~ = E , ~ , U ~ , , ~ ~ = O  ( - - c o < x < + o ~ , y < O ,  ( z (  > O ) ,  (2.12) 

where eijk is the permutation tensor. 
Equation (2.8) yields 

d X  = (I+'g,)dx+[,dy, d Y  = Tzdx+( l+r , )dy  (2 = O ) ,  
c&+ik+&/dy = * ( P x d X + q 7 d Y )  (2 = k 0). 

Eliminating dX and d Y ,  solving for 3' and F ! ,  substituting into (2.2) and using 
(2.6) yields (for details, see Noblesse 1975 b)  the transformed hull condition 

w ( l +  5, +r,+ EZTU - E&z) = (1 +u) (Q + CZ7, - CV7,) 
+V(C,+C,Ez-C,&J (2 = 50) .  (2.13) 

The kinematic free-surface condition (2.3) can similarly be shown to become 

v(l+ Ex + C Z  + Ez 6 - E Z C J  = (1 +4 (7, + r x 6  - 7 z d )  
+W(T8+?/25Z--rZ'gz) (Y = ot, (2.14) 

and it is readily seen that the dynamic free-surface condition (2.4) becomes 

U + ~ ( U 2 + V 2 + W 2 ) + 7  = 0 (y = 0). (2.15) 

2.4. Summary 

The exact equations of flow past a ship hull have been formulated in the physical 
space (X, Y ,  2) r(2.1)-(2.4)] and, by mapping the flow domain onto a reference 
domain (2.5), (2.6), in the reference space (x, y, z )  r(2.12)-(2.15)]. One difference 
between the two formulations lies in the fact that the domain where the solution 
is sought is complicated and unknown in the physical-space formulation, but 
becomes simple and known beforehand in the formulation in the reference space. 
A more significant difference, perhaps, is to be found in the fact that the solution 
is sought in explicit form, i.e. U(X) and Y = E ( X ,  Z), in the usual physical-space 
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formulation, whereas in the reference-space formulation the solution is sought in 
the parametric form (2 .5 )  and (2.6). An interesting feature of parametric repre- 
sentations is that they are not unique, and hence offer some degree of arbitrari- 
ness. Indeed, the mapping of the flow domain onto the reference domain, and 
hence the mapping vector E,(x), is arbitrary except for the requirement that t'he 
ship hull and free surface be mapped onto the ship centre-plane and undisturbed 
free surface respectively (for instance, 

A common feature of both formulations, however, is that they are nonlinear 
and appear to be equally intractable. We thus proceed with a thin-ship perturba- 
tion analysis. 

could clearly be set equal to zero). 

3. Thin-ship perturbation analysis in the reference space 
In  this section, a thin-ship regular perturbation analysis of the foregoing exact 

nonlinear problem is carried out in the reference space, and the first- and second- 
order problems are formulated and solved. 

3.1. Perturbation expansions 

Let E be the beam/length ratio, and let the funct.ion F(Q(X ,  Y )  be defined by 

F ( X ,  Y )  = € P ( X ,  Y ) .  (3.1) 

The parameter E is assumed to be small, and an asymptotic solution is sought by 
means of the following asymptotic expansions: 

f(X7 y) = €f(W, y) + €:2f(2)(X7 y) + . . . , 
u ( x )  = €U(l)(X) + €%"(X) + . . . , 
EJX) = €E,(l)(X) + € 2 p ( x )  + . . . . (3.4) 

Substituting (3.1) and (3.2) into (2.9) yields 

€j(l)(X, y) + € 2 f ( 2 ) ( X 7  y) + . . . 
= EF(~) (x  + €((')(x, y, 0) + . . ., y + s y ( l ) ( . ~ ,  y, 0) + . . .}, (3.5) 

where (x, y) E v. This equation can be used to express the 'linearized hull' function 
f(2, y) in terms of the ship hull W ( X ,  Y )  either explicitly by expanding the right- 
hand side of (3.5) in a Taylor series (as in §4) ,  or implicitlyvia an iterative pro- 
cedure? (as in $5) .  However, we are not concerned with these alternatives in the 
present section. The object of this section is to derive the first- and second-order 
perturbation solutions in the reference space in the most general form by using 
the general hull expansion (3.2). 

The first- agd second-order approximations to the field equations may be 
derived from (3.12) by substituting expansioiis (3.3) and (3.4).  It is simpler, how- 
ever, to proceed from (2.1) and (2.11), which can be rewritten as 

q,j(X) = ui,i(~)-~,L(X)~,;,j(~) (i,j  = 172,3)* (3.6) 

f In Mie latter case, f ( ' ) (~ ,y ) ,  f ( 2 ) ( ~ , y ) , . . .  depend on E, i.e. we have f(l)(z,y;e), 
j ' Z  )(.I?, y ; E ) ,  . . . . 
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3.2. TheJirst-order problem 

By using (3.6), (3.3), (2.5) and (3.4), we readily obtain for the first-order approxi- 
mation to the field equations (2.1) 

(3.7 a, b) v .u(l)(x) = v x u(l’(x) = 0 (y < 0). 

Equations (2.10), (3.2) and (3.4) give 

P ( x ,  y, * 0 )  = ff(% y )  ((x, y )  E 4- 

W(l ) (X ,  y, 5 0 )  = _+fp(., y) ((x, 9)  E d .  

(3.8) 

By substituting (3.3), (3.4) and (3.8) into (2.13), we obtain 

(3.9) 

Similarly, substituting (3.3) and (3.4) into (2.14) and (2.15) yields 

v(1) = ?y, $1) = -u(1) ( y = 0).  (3.10), (3.11) 

Equations (3.77, (3.9), (3.10) and (3.11) may be recognized as the equations of 
Michell’s approximation. Equations (3.7) give 

(3.12) 

(3.13) 

Substituting (3.12) into (3.9), (3.10) and (3.11) yields 

@)(x, y, k 0 )  = _+fPC., y) ((x, 9) E 4, (3.14) 

$@++F) = 0 (y = 0) .  (3.15) 

satisfying (3.13), the boundary conditions (3.14) and The velocity potential 
(3.15) and the radiation coiidition is given by 

where G(x, y, x ;  x’, y’, 2’) is the Havelock source potential (see, for instance, 
Wehausen & Laitone 1960, pp. 579 and 484). 

The only restrictions imposed upon the first-order mapping g(l)(x) are (3.8) and 
(3.11). Therefore F1), as well as the extensions of ~ ( l )  and to y < 0 and 1x1 > 0, 
respectively, are unspecified and may be chosen arbitrarily, as noted in 3 2.4. 

3.3. The secon,d-order problem 

The second-order field equations are likewise obtained by substituting (3.6), (3.3), 
(2.5) and (3.4) into (2.1). This yields 

Equations (2.10), (3.2) and (3.4) yield 

q2’(x, y, * 0 )  = *f“)(x, y )  ((x, y) € g). (3.19) 
23 F L M  75 
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Substituting (3.3), (3.4) and (3.19) into (2.13) gives the hull condition 
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w(’)(x, y, & 0)  = t. [f?’ + (,(I)- [!$)fkl) + (dl)-  7g’)ff’] ((x, y) E a), (3.20) 

where (3.8) and (3.9) have been used. The free-surface conditions are similarly 
obtained by substituting (3.3) and (3.4) into (2.14) and (2.15) and using (3.10). 
We obtain 

(3.21) 

(3.22) 

u(2) = 72) + ,(l)7kp + w(l)7p - (1) (1) - (1) (1) 
q ( 2 )  = - ,(a - +(,(1)2 + 0(1)2 + w(l)2) 

Eliminating 7(2)(x, 0, z )  between (3.21) and (3.22) yields 

zI k-x 7 2  “i (y = 0). 

+ 2)(2) = - 1(,(1)2 + ,(UZ + w“2) + (p - &)) ,L1’ 
2 X I  

+ ({i’) - w(~))z@) (y = 0 ) ,  (3.23) 

The general solutiont of the field equations (3.17) and (3.18) is found by 
where (3.10) and (3.11) have been used. 

inspection of the terms on the right-hand side to be given by 

U@)(X) = (p . V) u(l) + v p ,  (3.24) 

where r#A2)(x) satisfies the Laplace equation 

v 2 p  = 0 (y < 0). (3.25) 

Substituting (3.24) into (3.20), and using (3.8) and (3.7a),  yields the hullcondition 

+ (f(2)--(1~~1)-r(1~~1))x] ((x, y) ~ c r ) .  (3.26) 

Similarly, substituting (3.24) into (3.23) and using (3.10), (3.11) and (3.7b) gives 
the free-surface condition 

p ( X ,  y, 5 0) = f T(Z) (X ,  y) = 2 [(u(l)f‘l))x + (w(ly(l))u 

p g  + #$a = n(2)(X,  2) = - (,(1)2 + &)2 + w(1)2)x + + v(l))ar (Y = 0). 
(3.27) 

The second-order potential $(2)satisfying (3.25), (3.26), (3.27) and the radiation 
condition is given by 

p ( X ,  y, 2 )  = - i n / / g G ( ~ ,  y, z ;  z’, y‘, 0) d2)(z’, y‘) dz’dy’ 

G(x, y, z ;  z’, 0,z’)  d2) (x ’ ,  z ’ )  dx’ dz’, (3.28) 

where PS (free surface) denotes the plane y = 0. Again, the mapping E,@) is 
arbitrary, except for (3.19) and (3.22). 

3.4. Summary 

A thin-ship perturbation solution has been obtained in the reference space. To 
second order, the velocity field is given by 

u(x) = ap + q(p. v) v p  + v p ]  + 0(63), (3.29) 

t An alternative derivation of (3.12), (3.13), (3.24) and (3.25), based on a Taylor- 
expansion approach along the lines of Joseph’s (1973) study, may also be instructive and 
is given in appendix A. 
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where the first- and second-order potentials and #(2) are given by (3.16) and 
(3.2s) in terms of ‘centre-plane sources’ of strength fL1) and d2) [see (3.26)] and 
‘free-surface sources’ d2) [see (3.27)]. It is easy to ascertain [see equation (A 5) in 
appendix A] that the third-order approximation to the velocity is given by 

u(x) = €V$W + € 2 [ ( I y .  V) v p +  Vqw] 
+ €3([+(g(” . V)Z + (Ey . V ) ] v p  + ({(I) . V) v p  + V4(3)} 
+ 0(g4), (3.30) 

where the third-order potential 9V3) is given by (3.28) with the second-order 
sources 7(2) and n(2) replaced by third-order sources 7-(3) and T ( ~ ) ,  which can easily 
be obtained by substituting (3.30) into the hull and free-surface conditions (2.13) 
and (2.14), (2.15). 

The solution in the physical space X is then determined by substituting (3.29) 
and (3.4) into (2.6) and (2.5), respectively. We thus obtain 

(3.31 a )  

x = x + € p ( X ) + 0 ( € 2 ) .  (3.31 b) 

Expansions (3.31 a, b )  express the disturbance velocity U in parametric form, as 
noted in § 2.4. The main feature of this parametric representation of the perturba- 
tion solution is that the mapping vectors c(l), g(z), . . . are arbitrary except for the 
requirements on the ship centre-plane r(3.8) and (3.19)] and on the free surface 
[(3.11) and (3.22)]. In  the following section, it will be shown, however, that the 
consistent perturbation solution in physical space is independent of the mapping 
vectors, and that this consistent solution yields the classical thin-ship theory. 
The parametric form (3.31 a, b)  of the perturbation solution will be explored in $ 5 )  
leading to an interpretation and generalization of the method of Guilloton (1964). 

U(X) = eVqW(x) + e2{[C(l)(x). V] VqP(x)  + VqW(x)} + O(e3) ,  

4. Consistent perturbation solution and the classical thin-ship theory 
4.1.  Consistent perturbation solution in physical space 

A consistent expansion in physical space is defined as 

U(X) = €U(1)(X)+€2U(2)(X)+ ...) (4.1) 

where 6 does not appear in the functions U(”), which therefore depend on X alone. 
Expanding (4.1) in a Taylor series about the point x in the reference space, using 
(3.31 b), grouping the terms of the same order in and comparing with (3.31 a )  
shows that we have 

in agreement with equation (A 3) in appendix A. It is easily seen that expansion 
(4.2), to order en, can be derived from expansions (3.31 a,  b )  by retaining terms 
up to order enin (3.31 a )  and @--l in (3.31 b),  and eliminating the parameter x and 
the mapping vectors C(l), . . . , g(%-Q. 

The perturbation solution (4.3) is not yet strictly consistent since the velocity 
potentials Ip(l), qP), . . . are expressed in terms of the ‘ linearized hull functions ’ 
f(l),f@), ..., which involve the mapping, and therefore 8. To obtain a consistent 

U(X) = €vp(x) + € 2 V p ( x )  + . . . (4.2) 

23-2 
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expansion we must also expand the hull function P(l)(X, Y )  in (3.5) consistently 
in a Taylor series. This yields 

(4.3) 

(4.4) 

where (x, y) E Z, i.e. a is identical with C. Thus the consistent hull expansion 
implies a restriction on the mapping of the wetted part of the hull, namely that it 
be mapped onto the projection C of the portion of the hull beneath y = 0 onto the 
centre-plane. 

The first-order potential qY1) is then obtained from (3.16) by replacingf;tl)(x, y) 
by Pkl)(x, y) and (+by Z. Similarly, the second-order potential #@)isgiven by (3.28) 
with a and d2)(x, y) replaced by C and 7L2)(x, y), defined by 

f'%, y) = F Y x ,  y), 

f'2'(X, $4) = ", y, O)F!ax ,  y) +Y'l'(X, y, O ) W ( x ,  y), 

.i2'(., y) = [@(x, Y, 0) PYX,  y)l, 
+ [v(l)(z, Y, 0 )  p q x ,  Y)l, ((x, y) E v, (4.5) 

which readily follows from (4.3), (4.4) and (3.26). 
Therefore, it  may be seen that the consistent perturbation solution in physical 

space is independent of the mapping, which appears neither in the expressions 
for $1) and qP) nor in (4.2), and is thus unambiguously, and explicitly, defined in 
terms of the ship hull. The fact that the consistent perturbation solution in 
physical space is independent of the mapping was previously established by 
Joseph (1973) in his discussion of two-dimensional progressive waves. 

Equation (4.2) is readily understandable when X is within the reference space, 
i.e. when Y 6 0. However, when X is outside the reference space, i.e. when 
0 < Y 6 E ( X ,  Z ) ,  @)(X), qY2)(X), ... must be understood as the analytic con- 
tinuations of qW(X), qP)(X), .. . above Y = 0, since the Green function G(X, x') 
is defined for Y < 0 only. We may also, in the spirit of the classical thin-ship 
theory, define the extension of qW(X), #@)(X), . . . outside the reference space by 
means of a Taylor expansion about a point x inside the reference space. To first 
and second order, (4.2) may thus be written as? 

(4.6a) 

(4.6 b)  

where X and x are any two arbitrary points in the physical and reference space 
with the only restriction that IX-x( = O(e) ,  i.e. that the distance between 
X and x be of order 8. It is emphasized that, while in (3.31 a, b )  X is a continuous 
function of x, no such continuous correspondence between X and x is implied in 
(4.6a,b). Indeed, the values of U(X) obtained by using two different points 
x1 and x2 such that Ix, - x21 = O(s)  differ by terms of order s2 in (4.6a) and ss in 
(4.6 b) ,  i.e. discontinuities of higher order. 

Finally, the free surface is defined by 

which follows from (2.7), (3.4), (3.11), (3.12), (3.22) and (3.24). 

mapping vectors 5(1), p(z), . . . . 
Equations (4.6a, b )  may also be obtained directly from (3.31a, b)  by eliminating the 
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4.2. The classical thin-ship theory 
Equation (4.2), where the first- and second-order potentials and qP) are given 
by (3.16) and (3.28) with cr,f(l) and d2) replaced by I;, P(l) and T $ ~ )  [see (4.5)], and 
the free-surface equation (4.7) may be recognized as the results of the classical 
thin-ship theory of Michell (1898) and, with somewhat different forms for the 
second-order terms,? of Wehausen (1963) and Maruo (1966). 

Strictly speaking however, the classical thin-ship theory is to be recognized in 
(4.6), rather than (4.2), for points X outside the reference space, i.e. for 
0 < Y < E ( X ,  2). In  fact, in the classical derivation of the thin-ship theory, (4.6) 
is to be interpreted in an even more restricted sense, namely, the value of the 
velocity U(X) at a point X on the free surface is evaluated by taking the projection 
of X onto the undisturbed free surface Y = 0 as the point x in the Taylor series 
(4.6), while the value of U(X) at a point X on the ship hull is obtained from the 
projection x of X onto the ship centre-plane 2 = 0. Thus, in the words of the dis- 
cussion following (4.6), a discontinuous correspondence between X and x is 
implied in the classical derivation and interpretation of the thin-ship theory. 
This discontinuous correspondence is somewhat confusing, particularly a t  the 
intersection of the free surface and the hull, and has led to the belief that an 
additional line-integral term was needed. 

Whereas the first-order potential qV) can be computed relatively easily, the 
computation of the second-order potential qP) poses a formidable problem, even 
in the case of simple analytical hull shapes, The main difficulty is associated with 
the free-surface source distribution d2) [see (3.27)]. 

In  addition to these numerical difficulties, the thin-ship consistent solution is 
non-uniform as the Froude number tends to zero, and the computation of the 
second-order term thus becomes of limited value in this limit. This problem was 
investigated by Dagan (1975b) in the case of two-dimensional flow past sub- 
merged bodies: i t  was shown that the non-uniformity depends essentially on the 
shape of the leading edge, and that it worsens as the shape becomes blunter. An 
estimate of the spectra of the free-waves generated by a wedge-like bow shape 
(Dagan 1973) shows that the ratio between the amplitude of the second- and 
first-order far free-waves is O(s In P), where P is the Froude number based on ship 
length. Hence, for a ship of given beamllength ratio, the consistent thin-ship 
expansion becomes non-uniform as P -+ 0. The remedy suggested in the two- 
dimensional case (Dagan 1975 b)  is to incorporate the second-order term into the 
first-order one by co-ordinate straining. 

5. Mapping-dependent perturbation solutions and the method of 
Guilloton 

5.1. Mapping-dependent inconsistent second-order solution 

It was shown in the previous section that the consistent second-order solution in 
physical space could be obtained from expansions (3.31 a, b)  by retaining terms 

t Note added in proof. The seoond-order terms (3.28), (3.27) and (4.5) are in exact 
agreement with the results given in equations (15) and ( 12) of Eggers ( 1966). 
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(5.1 a, b )  actually exact to second order. By comparing (5.1 a )  with (3.31 a) ,  it is 
immediately evident that this would be achieved by selecting <(l) such that 

[<‘1’(x) .V] V#l)(X) + VqP)(X) = 0. 

U(l)(X) - U‘l’(X) + W(x) = 0, 

(5 .5)  

By using (5.1b), (4.1) and (4.2), (5.5) may be written as 

which may be interpreted very simply as follows: can we find a continuous 
mapping X cf x such that the difference between the first-order velocity U(l) at 
points X and x, i.e. U(l)(X) - U(l)(x), cancels the second-order velocity Uc2)(x)? 
At first glance it would seem unlikely that the answer to this question should be 
in the affirmative because $l) and <(l) are defined by (3.8) and (3.11) along 
y = x = 0, so that (5.5) becomes a system of three algebraic equations for only 
one unknown ((l). 

In  any case, the purpose of this subsection was mainly to show that the fist-  
order approximation (5.1 a, b)  offered the possibility of being improved, i.e. 
rendered a good approximation to the exact second-order solution, by exploiting 
the freedom in the mapping g(l). Furthermore, this provided an interpretation of 
the method of Guilloton. I n  the following subsection, it will be shown that the 
arbitrariness in the mapping g(l) may also be used advantageously for the purpose 
of simplifying the complete second-order solution. 

5.2. Derivation of a simplijed second-order solution by  using the 
jirst-order mapping 

We recall that in 0 4 the complete second-order solution (3.31 a,  b )  was shown to 
be independent of the mapping 5‘1) to order e2. In  fact, g(l) was eliminated and the 
solution (3.31 a, b )  was written in explicit form (leading to the classical thin-ship 
theory). It is clear, however, that the mapping g(l) need not be eliminated from 
(3.31 a, b) .  In  this subsection the complete second-order approximation, in the 
parametric form (3.31 a, b ) ,  is reconsidered, and after rewriting u(2) in (3.24) and 
(3.28) in an alternative form, the freedom in the selection of the mapping is 
exploited to derive a second-order solution circumventing the difficulty associ- 
ated with the numerical evaluation of the contribution of the free-surface source 
density n(2) to the second-order potential $(2) [see (3.28)]. 

We first derive the alternative expression for the second-order velocity d2). By 
using (3.7 b) ,  we observe that the irrotationality equations (3.18) are identically 
satisfied if d2) is written as 

where O(2) is any arbitrary scalar function. Successively mbstituting (5.6) into the 
continuity equation (3.17), the hull condition (3.20) and the free-surface condition 
(3.23) yields 

u\?)(x) = - u(!)p 3 i,i + f9 , a  (?) 9 (5.6) 

V28(2) = m ( X )  = V z ( p  .u(1)) (y < O ) ,  (5.7) 

(5.8) 

(5.9) 

sp(x, y, f 0) = f P ( x ,  y) = f [fp+ (?A@)-- g+ <p) f&? 
+ (v(1) - rx (1) )f, (1) + (u(1)6-L1)+ v(1)7/L1))c=+01 ((x, 9) E 4, 

f9g + f9$) = ii(”(x, 2 )  = u(1). (<$A + gk”, 
+ 2 (gg) - L@) . u(1) x - (7.z (1) - v(1)) v p  (Y = 01, 
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where (3.9) and (3.7 b)  have been used in (5.8) and (5.9) respectively. Equations 
(5.7)-(5.9) could also have been derived from (3.25)-(3.27) by using the relation- 
ship 8c2) = @2)+g(1).u(1), which readily follows from (3.24) and (5.6). 

The solution 8(2) satisfying the Poisson equation (5.7)’ the boundary conditions 
(5.8) and (5.9) and the radiation condition is given by 

G(x;  z’, 0,z’)  ii@)(x’, z’) dx‘ dz‘. 
- d L s  

(5.10) 

Equations (5.6) and (5.10) define the second-order velocity u ( ~ )  in terms of distri- 
butions of sources of strengths S(2), 6(2)and ti(2)over the lower half-space y < 0, the 
centre-plane z = 0 and the free surface y = 0, respectively. 

?(2) and fi(2), by contrast with the free-surface source 
density d2)in (3.27), depend explicitly upon the first-order mapping g(l). This fact 
is exploited below, where ii(2) and are successively cancelled by properly 
selecting the mapping T$) and the ‘linearized hull’fcl). It turns out that the free- 
surface source density fi(2) is identically cancelled by Guilloton’s mapping, which 
is thus given a precise interpretation in the frame of the present analysis. By 
generalizing Guilloton’s mapping, the volume distribution of sources S(2) can also 
be cancelled on the centre-plane (not for IzI > 0, however). 

Before we proceed with the successive cancellation of fi@), ?@) and (on z = 0) 
i t  may be worth emphasizing the purpose of the operation and the role of the 
mapping g(l). By (3.31 a, b) and (5.6) we have 

The source densities 

] (5.11) 
U,(X) = eu(,l(x) - e2%y)g;i + €28!$’+ O(E3)  ($ = 1,2,3), 

x = x + € . p ( X )  -to(@). 
It is again emphasized that g(l) has no effect upon U(X) to order e2. However, our 
aim is to cancel @2), or at least render it negligibly small, by selecting a suitable 
first-order mapping vector c(1) and ‘linearized hull’fcl). Thus we seek to incorpo- 
rate the nonlinear effects associated with the second-order potential 8C2) into the 
first-order velocity u(l) [by means of the ‘linearized hull’ffl), see (3.16)] and the 
second-order term wi1)$; (this term can be easily evaluated in terms of u(l) 
and g‘l)). 

By intuitive physical reasoning, Guilloton (1964) arrived a t  the transforma- 
tion-f (interpreted here as a first-order mapping$ F1)) 

(5.12) 1 “”(x) = J:m u(l)(x’, y, 2) dx’, p ( X )  = - q x ) ,  

p ( x )  = w(l)(x’, y, 2) dx‘. SI, 
f In fact, the mapping (5.12) differs slightly from Guilloton’s transformation by a 

second-order term in 6(1), extension of the integration in x’ to infinity upstream (instead of 
the bow) and extension of the mapping to the entire space; for details see Dagan ( 1 9 7 5 ~ )  
and Noblesse ( 1 9 7 5 ~ ) .  

$ It may be readily verified that (3.8) and (3.11) are satisfied. 
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We may immediately verify that Guilloton’s mapping (5.12) has the distinguished 
property of rendering the strength iiO(x, z )  of the free-surface sources (5.9) equal 
to zero. Guilloton’s mapping (5.12)’ however, does not cancel the cent,re-plane 
and volume sources ?(2) and Indeed, by substituting (5.12) into (5.8) and using 
(3.7 a, b )  and (3.9)’ we obtain 

?(*)(x,y) =f$’)-f$)/” vf’dx’-v(l)f.$2+ (ug’+v(l))fg’ ( x  = 0). (5.13) 

The method of Guilloton implies that 9 2 )  and S@) may be neglected. However, it  
will now be shown that may easily be cancelled by extending Guilloton’s con- 
cept of the ‘linearized hull’. Guilloton’s ‘linearized hull’ function f(l) is defined 
by the mapping (5.12) and the hull expansion (3.5), wheref“je set equal to zero. 
It is clear, however, thatf(2) need not be set equal to zero, and (5.13) then shows 
that the second-order centre-plane sources 8 2 )  may be rendered equal to zero by 
taking 

- W  

f ‘ Z ) ( X ,  y) = j” [ fy’(x’, y)/:m v;)(x”, y, 0) dx” 
- W  

+ v(l)f.;2 - (u‘,”+ ~(1))fg) dx‘ ( Z  = 0). (5.14) 1 
Equations (3.5) and (5.12) then give 

The functionfcl) enters implicitly on the right-hand side of (5.15) through dl) [see 
(3.12) and (3.16)] andfo  [see (5.14)], and must then be found by means of an 
iterative procedure. 

Thus Guilloton’s mapping (5.12) renders the second-order free-surface sources 
ii(2) equal to zero, and the geiieralized ‘linearized hull’ f(l) in (5.15) makes the 
second-order centre-plane sources ?@I zero. It now follows from (5.10) and (5.11) 
that the second-order approximation to the velocity is given by 

x = x + e p ( x ) .  

If the volume distribution of sources is neglected, we obtain an inconsistent 
second-order solution which satisfies the irrotationality equations (3.18), the b.1111 
condition (3.20) and the free-surface condition (3.23), but not the continuitj. 
equation (3.17). The main feature of this inconsistent approximation is that it is 
directly given in terms of the first-order solution u(l) by means of relatively 
simple expressions. 

This approximation differs from that of Guilloton by the term #’<$ in (5.16) 
[Guilloton’s approximation is of the form (5.1 a, b), i.e. d2) is zero] and by the 
second-order term f@) in (5.15). Similar inconsistent approximations were also 
previously obtained by Wehausen (1969), Dagan (1975a) and Noblesse (1975a). 
These approximations are based on the Lagrangian mapping 

p ( x )  = yw u(l)(x’, y, 2) dx’, 
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which differs slightly from Guilloton’s mapping (5.12) in the vertical component 
@). The main differences between the above inconsistent approximation and 
those of Dagan (1975 a) and Noblesse (1975 a )  lie in the termf@), which was taken 
equal to zero, and in the term ukl)# in (5.16), in place of which we had the 
second-order velocity? d2) = - &(l). u(l), 0‘2) = zd2) = 0. 

The above comparison between the various approximate solutions is of course 
not intended to suggest that the particular approximation obtained above should 
be expected to lead to numerical results in better agreement with experimental 
measurements. All these various approximations are inconsistent second-order 
solutions, and there is clearly no a priori reason why neglecting to satisfy (to 
second order) the continuity equation only, rather than, say, both the equation 
of continuity and the equations of irrotationality as in the previous studies of 
Dagan (1975~)  and Noblesse (1975a) should lead to a better approximation. 

In  any case, we shall now indicate how the volume distribution of sources 
can be cancelled on the centre-plane by generalizing Guilloton’s mapping (5.12) 
[one must hope that this would render small in the neighbourhood of the hull, 
and the last term in (5.16) negligible]. It will readily be verified that the free- 
surface sources @) [see (5.9)] are identically cancelled by the mapping 

5‘1’ = dx’ + A(1), = - &) +pW, “1) = 1: ~ ( 1 )  ax‘, (5.17) 
QI a, 

where the functions A@) and $1) satisfy the conditions 

Az;++hc,l, = 0, p‘” = 0, &’ = 2Ap (y = 0). (5.18) 

In  addition, we may require A(1) to satisfy the Laplace equation V2A(l) = 0, so 
that A(1) may be written as 

(6.19) 

where ~(l)(x, y) is related to A(l) by A($(x, y, & 0) = 5 dl)(x, y). Equation (5.18) may 
be satisfied in a simple way by taking, for instance, 

p‘l)(x) = 2A‘,l’(x, 0 , z )  B(y), (5.20) 

where p(y) is a function satisfying p(0) = 0, p‘(0) = 1 and p-+ 0 as y -+ - co. It 
may be noted that (5.20) implies that ,dl) satisfies a Poisson equation rather than 
Laplace’s equation. 

= 0 on 
z = 0 leads to a two-dimensional inhomogeneous integral equation of the second 
kind for the centre-plane source density dl)(x, y) in (5.19). This integral equation 
may be simplified to a one-dimensional equation if &2) is required to vanish only 
along the centre-line y = z = 0 rather than on the centre-plane z = 0. 

Admittedly, the mapping (5.17) can hardly be regarded as a simple mapping 
in comparison with Guilloton’s mapping (5.12). However, it must be remembered 

The term u@) = - & u ( ~ ) . u ( ~ )  was found necessary to cancel the free-surface sources. 

Substituting (5.17), (5.19) and (5.20) into (5.7) and requiring that 

In  the present approximate solution, we have u@) = -u (~ ) .u (~ ) .  
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that we are seeking a mapping which accounts for the effects of the second-order 
potential 8(2), and perhaps one should not expect too simple an answer. The diffi- 
culties of a solution along the lines described above must really be weighed against 
the difficulties associated with the evaluation of the contribution of the free- 
surface sources d2) in (3.27) to qY2) in (3.28). A definite advantage of the solution 
presented above is that it involves centre-plane source distributions alone. This 
means that the Havelock source potential G(x; x’) need be considered only for 
z = z’ = 0, so that the double and simple integrals in G(x; x‘), which are functions 
of the three variables x - XI, y + y’ and z - z’, become functions of two variables 
only. 

6. Summary and concluding remarks 
In  this paper, the classical thin-ship theory and Guilloton’s method have been 

derived by a rational and unified approach based on a continuous mapping of the 
flow domain onto a simple reference domain and perturbation expansions for the 
velocity and mapping vectors with the beam/length ratio as the small parameter. 
The classical thin-ship theory was obtained in 8 4 as the consistent perturbation 
solution in physical space. This consistent solution is independent of the mapping 
and is expressed explicitly in terms of the hull function. 

In  contrast, the perturbation solution in 5 5 .2  is expressed in parametric form, 
with the reference-space co-ordinates appearing as parameters. Such a parametric 
representation, unlike the explicit representation of the classical thin-ship theory, 
is not unique, as testified by the fact that the mapping of the flow domain onto 
the reference domain is arbitrary to a certain extent. This arbitrariness was 
exploited to derive a second-order approximation expressed in terms of the first- 
order velocity field generated by the ‘linearized hull’. The latter is related to the 
real hull by means of Guilloton’s mapping (5.12) or the generalized mapping 
(5.17). Guilloton’s mapping has been shown to cancel the free-surface sources 
ii@) in (5.9), while the mapping (5.17) aims a t  cancelling both fP) and the volume 
sources 6(2)in (5.7) along the centre-plane. I n  physical terms, this means that part 
of the nonlinear second-order free-surface effects are accounted for by the f is t -  
order velocity field (Michell’s linear solution) generated by Guilloton’s ‘linearized 
hull’, while the generalized ‘linearized hull’ based on (5.17) would incorporate 
the nonlinear free-surface effects entirely. 

An interesting feature of the parametric representations of the second-order 
approximation, either in the form (3.31) or (5.11), is that the perturbation 
parameter E enters implicitly and therefore to order higher than the second. In  
other words, such a second-order approximation actually includes higher-order 
terms, so that it is not strictly consistent to second order. This may be illustrated 
by considering the wave profile along the hull, which for simplicity may be 
written as Y = ea sin ( X  - @), where a is some slowly varying amplitude func- 
tion. If the bow (or the stern) of the ship is fairly blunt, C(l) may become large 
there, so that expanding sin (X - ef;‘l)) asymptotically as sin X - @) cos X + 0 ( e 2 )  
would result in poor accuracy. In  fact, if the bow is too blunt, such an asymptotic 
expansion would become non-uniform. Similar difficulties occur at low Froude 
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number, as noted in $4. These difficulties, however, do not occur if the 
solution is expressed in implicit form, i.e. as Y = €a sin x, X = x + sf(l). 

The intention of the above discussion was to point out that it may be advan- 
tageous to express perturbation solutions in parametric form. It is not claimed 
however that the second-order approximation (5.16) is free from non-uniformities 
at the bow and stern and a t  low Froude number, since there are second-order 
terms in the expansion for the velocity which may lead to non-uniformities. In  
fact, we have been concerned in this paper exclusively with the regular perturba- 
tion problem, ignoring the question of the uniformity or non-uniformity of the 
perturbation solution. Yet i t  is tempting to speculate that the generalized 
mapping (5.17) might render the second-order solution (5.16) uniform by cancel- 
ling the volume sources 6(2) on the centre-plane, and in particular a t  the bow and 
stern, where non-uniformities originate. 

There is obviously a certain similarity between the continuous-mapping 
approach and the method of co-ordinate straining; indeed the reference-space 
co-ordinates x and the mapping vectors gCn) can be regarded as strained co-ordi- 
nates and straining functions, respectively. Both the mapping and the straining 
of co-ordinates are non-unique, and the perturbation solution is usually expressed 
in parametric form. There is, however, an important difference between the two 
approaches: co-ordinate straining aims at eliminating non-uniformities from 
perturbation solutions (Van Dyke 1975, p. 99), whereas the mapping is used 
here strictly in the context of a regular perturbation analysis, as noted above. In  
addition, the method of co-ordinate straining has been applied mainly to two- 
dimensional flow problems whereas here we are concerned with a complex 
three-dimensional flow with a nonlinear free-surface boundary condition. 

The nonlinear approximation presented in $ 5.2 must ultimately be validated 
by comparing the predicted wave resistance and wave pattern with measure- 
ments for hulls of practical shapes. This requires elaborate numerical computa- 
tions, which are a t  present being undertaken by the first author, who is mainly 
responsible for the developments of $ 5.2. Other applications and extensions of 
the approach developed in this paper are also contemplated by the authors. 

This study was supported by the National Science Foundation under Grant 
no. ENG75-03974. 

Appendix A. Solution of the field equations by Taylor expansions 
By (2.5) we have U(X) = U(x+g). Expanding in a Taylor series yields 

U(X) = U(x) + (5. V) U(x) + +(5. V)Z U(x) + . . . . 

U(X) = €U@)(X) + €2U(2)(X) + . . . 

(A 1) 

We assume that U(X) has the asymptotic expansion 

(A 2) 

in the physical space X. The field equations (2.1) imply that 

v .  W)(X) = v x U(")(X) = 0 (n 2 I). 
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Therefore we have 

Expansion (A 2) then becomes 

U(X) = €VqW(X) + “ v p ( X )  + . . . . 
U(x) = €V@l)(X) + €2V$W(X) + . . . . 

(A 3) 

(A 4) This gives 

Finally, by substituting (A 4) and (3.4) into (A 1) and using (2.6) and (3.3), we 
obtain (3.12) and (3.24). 

More generally, it  follows from the above analysis that the general solution of 
the field equations (2.12) in the reference space is given by 

u(x) = [I +g .v+&(g .V)Z+ ...I V$(X), (A 5) 

where q5 satisfies the Laplace equation VzSp = 0. 
The above approach follows Joseph (1973). 

Appendix B. Hydrodynamic forces and moment 
A general expression for the wave resistance experienced by the ship may be 

obtained from considerations ofmomentum balance; see Wehausen (1973, p. 100). 
For an inviscid fluid, we have 

where R = R‘g2/pW, S, is an arbitrary control surface drawn in the fluid and 
surrounding the hull, C, denotes the line where S, intersects the free surface, and 
n is a unit vector normal to S, and pointing outwards. 

The control surface S, may be taken as the wetted hull, in which case we have 
U . n = - n,. By transforming the surface integral over the wetted hull into a 
double integral over the projection XWh of the wetted hull onto the centre-plane, 
and by a similar transformation of the line integral, we then obtain 

where X, and X ,  denote the abscissae of the bow and stern of the ship. An 
equivalent expression may be obtained by integrating the pressure acting upon 
the hull. 

By using the mapping relations (2.5)-(2.9), the wave resistance R given by 
(B 2) may then be expressed in terms of quantities in the reference space: 
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Finally, introducing the perturbation expansions (3.2)-( 3.4) yields, after an easy 
manipulation cancelling the simple integral in (B 3), 

- 2e3/jg (u( l )+p) (fpr;~--f;l~rp) axay+ o(64). (B 4) 

By (3.11), we have u(l)+@) = 0 on y = 0, so that the last term in (B 4) isactually 
of order e4 for ships whose draft is as small as the beam. In  this case, (B 4) may be 
written as 

r r  

where expansion (3.2) has been used. 
An expression for the wave resistance in terms of the far-field free-waves may 

also be derived by choosing the control surface S, in (B 1) as a vertical plane far 
upstream from the ship together with a surface S ,  far downstream extending to 
infinity downwards and in the lateral direction. The corresponding expression is 
directly given by (B 1) with 8, and C, replaced by S,  and C, (the line where S, 
intersects the free surface). 

It is convenient to take S, as the surface which is mapped onto a vertical plane 
x = x,, y 6 0 in the reference domain. By using the relationship 

n dS = (Vy + 5,) x (Vz + gz) dy dz, 

(B 1) becomes 

By substituting the asymptotic expansions (3.3) and (3.4) and by using (3.11) 
and (3.22), (B 6) becomes 

+ ~ ( € 4 ) .  
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As x, -+ 03, and d2) tend to zero like x-4. If 5(l) is also assumed to vanish like 
x-4 (as is the case for both Guilloton's mapping and the suggested generalized 
Guilloton mapping), i t  may be seen that the last two terms in both the double 
and the simple integral in the bracket O(s3) vanish like x-4 and may thus be 
dropped. Expansion ( B  7) may then be written as 

R = /om [ - (e&) + szu(z))2 + (sdl) + s2v(2))2 + (ew(l) + e2w(2))2] d y  dx 

+ JOm + E w y d z  + o(64). (B 8 )  

In  addition to the wave resistance R, the ship also experiences a vertical 
lift L = L'g2 /pW (counted as positive if acting upwards) and a moment 
M = M'g3/pW about the Z axis (evaluated at the origin 0 of the system of 
co-ordinates OX Y Z  and counted as positive if acting anticlockwise). These may 
readily be obtained by integrating the pressure acting upon the hull: 

L = -2SSz_[U+&U2+ P+W2)+ Y ] P 1 - d X d Y ,  (B 9) 

M =-2~~~wh[U+f(Uz+V2+W2)+Y](XP~-YF')dXdY. (B lo) 

A simple manipulation of the hydrostatic terms yields 

with L* and H* defined as 

[ U + * ( U 2 +  V2+W2)](XFy-  Y F x ) d X d Y  

+ 2 / 1 1 ( / 0 E F ( X ,  Y ) d Y - P ( X , E ) E  X d X .  (B13)  

In  ( B  11 a, b ) ,  C denotes the centre-plane area inside the hull and below Y = 0 
(Z must not be confused with CZcrh, which is the centre-plane area inside the hull 
and below the free-surface profile Y = E).  The first terms in (B 11 a, b )  depend 
on the hull geometry alone, and can thus exactly, and easily, be calculated. 

i 

n n  

Indeed, the term 2 JJ P d X d Y  is nothing but the volume enclosed by the hull 
r, 

below Y = 0, and corresponds to  the buoyancy force for this volume. The term 

2jjr ,  F X  d X  d Y  similarly corresponds to the moment of this hydrostatic force. 

The last terms in (B 12) and (B 13), on the other hand, are readily seen to be 
identically zero for a hull with vertical sides in the neighbourhood of the free 
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surface, and negligible for most hulls of practical shape. In  any case, in a strict 
asymptotic sense, these terms are of order €3. The first terms in (12) and (13) may 
be expressed in terms of quantities in the reference space in the manner shown 
for the wave resistance. Introducing expansions (3.2)-(3.4) then gives, to second 

For the case of ships whose draft is as small as the beam, y in (B 15) is of order E 

and the corresponding term then becomes of order e3. Furthermore, (B 14) and 
(B 15) may be simplified by neglecting the variation of d l )  (of order E )  over the 
draft (it must nevertheless be remembered that the wave component of dl) dies 
out exponentially, i.e. fast). We then readily obtain 

L, = - wj;: z ~ c l p d ~  + 0 ( € 3 ) ,  N* = - 2e 1:; d1Y(l) x dz + 0 ( e 3 ) .  (B 16) 

Equations (B 14)-(B 16) are in agreement with the results obtained by Wehausen 
(1969) in his study of the use of Lagrangian co-ordinates for ship waves. 

Appendix C. Sinkage and trim 
Let (x, P) be a system of co-ordinates attached to the hull and such that 

2 = X and P = Y when the ship is at rest. The ship in motion experiences 
a certain lift L, wave resistance R and moment M ,  and, in response to these, 
a certain sinkage F, (defined as the downward vertical displacement at the 
origin 0 of the co-ordinate system OX YZ)  and trim angle a (counted as positive 
for a bow-up rotation); see figure 2. The relationship between (a, P) and (X, Y )  is 

X = Xcosa-(Y+h)sina,  P = Xsina+(Y+h)cosa.  (C 1) 

The unknown hull equation Z = & P ( X ,  Y )  is then related to the given equation 
Z = 5 P(x, f )  by means of (C 1) together with the relation F ( X ,  Y )  = P(s, p). 
By using (2.9), (2.8) and (C l), we then obtain 

f ( X ,  y) = &rx + ‘3x9 y, 0)l cos a - ry + r(x ,  y, 0) + hl sin a, 
rx + E(x,  y, 0)l sin a + [y + r(z ,  y, 0) + hl COB a}, (C 2) 

which relates the ‘linearized hull’ function f(x,y) to the given hull function 
p(x, P). The effects of sinkage and trim are thus indirectly incorporated into 
the solution by means of the ‘linearized hull’ functionf(z, y). 

The sinkage h and the trim a are determined by the condition that the ship, 
regarded as a free body, is in equilibrium under the action of the various forces 
acting upon it. The equations stating the equilibrium of the ship are 

R - T c o s ~  = 0, 

L -  W+Tsina = 0, 
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FIGURE 2. Definition sketch for sinkage and trim. 

where R, L and M denote the wave resistance, the lift and the moment exerted 
upon the ship by the water, W and M, denote the weight of the ship and its 
moment with respect to the origin 0, and T is the propelling thrust, assumed to 
be acting parallel to the ;L’ axis a t  a distanced, below it; see figure 2. The condition 
for equilibrium of the ship at rest implies 

FdXdY, M, = 2 FXdXdY, (C 6) 
= 21/z, I I X ,  

where Zen denotes the projection of the wetted hull of the ship at rest onto the 
centre-plane. By replacing T by R sec a in (C 4) and (C 5 ) ,  and by using (C 6) and 
(B I1 a, b ) ,  we then obtain 

2/Iz F X  dX d Y - 2/IzePX dX d Y + M* - R(h + d, see a)  = 0. (C 8) 

By noting that a downward displacement h (sinkage) and a bow-up rotation a 
(trim) of the ship is equivalent to an upward elevation h and opposite rotation a 
of the free surface, we easily see that 

/ I Z F ( X ,  Y )  dXd Y - P ( X ,  Y )  dXdY = 1 dX /r+xtanaF(X, Y)dY 

for h and a small, of order E (a will be shown below to be the case), and similarly 
for F X  in (C 8). With h and a assumed to be of order E ,  as well as d,, the terms 
involving the wave resistance R, itself of order e2, in (C 7) and (C 8) are seen to be 
of order €3. Thus, to order e2, (C 7)-(C 9) give 

h I I I B ( X )  dX + a/I?(X) XdX + *L, = 0, 

h / z B ( X )  X dX + a I x B B ( X )  X 2  dX + +H, = 0, 

(C 10) 

(C 11) 
XS 

24 F L M  75 
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where B ( X )  = F(S,O) denotes the half-beam of the ship a t  section X. 
Equations (C 10) and (C 11) are a system of linear algebraic equations for the 
sinkage h and trim a. The coefficients of h and a depend on the geometry of the 
hull water-plane section alone. Since these coefficients are of order E while 
L, and M* are O ( E ~ ) ,  it  follows that h and a are O(e) ,  as assumed above. Equations 
(C 10) and (C 11) have been given by Tuck (1966) and, with L, and M, given by 
(B 16), by Wehausen (1969). The approach used above is different from that of 
Wehausen, who introduced sinkage and trim explicitly into the analysis from 
the outset. 

In  the particular case of a fixed hull (h  = a = 0 ) ,  the ‘linearized hull’ function 
f ( x ,  y) must be determined from (C 2) by an iterative process, as the mapping 
components [and 7 depend on the velocity field, which itself depends onf. A con- 
venient first approximation is obviously f ( z ,  y) = %(x, y); see for instance Gadd 
(1973). If sinkage and trim are allowed, this iterative procedure need be modified 
only by using (C 10) and (C 11) with L, and H* given by (B 16). 

Finally, it  should be recalled that the expressions used for R, L, and H* in 
(C 7 )  and (C 8) are based on the assumption of inviscid fluid. Viscosity effects, of 
course, result in changes in R and, to a lesser degree, in L, and M*. It may 
readily be seen, however, that expressions (C 10) and (C 11) for h and a remain 
valid if the changes in R, on the one hand, and in L, and M,, on the other hand, 
are of order e2 and s3, respectively. This is not verified a t  low speed, when the 
resistance experienced by the ship is mainly due to viscous effects, but then 
sinkage and trim are negligible. In  fact, Yeung (1972) computed sinkage and trim 
by using (C 10) and (C 11) with L, and i l l ,  given by (B 16), and obtained satis- 
factory agreement with experimental values [although (C 10) and (C 11) are not 
valid a t  low Froude number F ,  they predict h -+ 0 and a -+ 0 as F -+ 0 since 
L,, M,+O asP+O]. 
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